Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 121: 104514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637076

RESUMO

The enzymatic repertoire of starter cultures belonging to the Lactococcus genus determines various important characteristics of fermented dairy products but might change in response to the substantial environmental changes in the manufacturing process. Assessing bacterial proteome adaptation in dairy and other food environments is challenging due to the high matrix-protein concentration and is even further complicated in particularly cheese by the high fat concentrations, the semi-solid state of that matrix, and the non-growing state of the bacteria. Here, we present bacterial harvesting and processing procedures that enable reproducible, high-resolution proteome determination in lactococcal cultures harvested from laboratory media, milk, and miniature Gouda cheese. Comparative proteome analysis of Lactococcus cremoris NCDO712 grown in laboratory medium and milk revealed proteome adaptations that predominantly reflect the differential (micro-)nutrient availability in these two environments. Additionally, the drastic environmental changes during cheese manufacturing only elicited subtle changes in the L. cremoris NCDO712 proteome, including modified expression levels of enzymes involved in flavour formation. The technical advances we describe offer novel opportunities to evaluate bacterial proteomes in relation to their performance in complex, protein- and/or fat-rich food matrices and highlight the potential of steering starter culture performance by preculture condition adjustments.


Assuntos
Queijo , Produtos Fermentados do Leite , Lactococcus lactis , Animais , Proteoma/metabolismo , Fermentação , Queijo/microbiologia , Leite/microbiologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
2.
Microbiol Spectr ; 11(6): e0224823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888986

RESUMO

IMPORTANCE: The availability of nutrients to microorganisms varies considerably between different environments, and changes can occur rapidly. As a general rule, a fast growth rate-typically growth on glucose-is associated with the repression of other carbohydrate utilization genes, but it is not clear to what extent catabolite repression is exerted by other sugars. We investigated the hierarchy of sugar utilization after substrate transitions in Lactococcus cremoris. For this, we determined the proteome and carbohydrate utilization capacity after growth on different sugars. The results show that the preparedness of cells for the utilization of "slower" sugars is not strictly determined by the growth rate. The data point to individual proteins relevant for various sugar transitions and suggest that the evolutionary history of the organism might be responsible for deviations from a strictly growth rate-related sugar catabolization hierarchy.


Assuntos
Carboidratos , Açúcares , Glucose/metabolismo
3.
Microbiol Spectr ; 10(3): e0270821, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35638825

RESUMO

Manganese (Mn) is an essential trace element that is supplemented in microbial media with varying benefits across species and growth conditions. We found that growth of Lactococcus cremoris was unaffected by manganese omission from the growth medium. The main proteome adaptation to manganese omission involved increased manganese transporter production (up to 2,000-fold), while the remaining 10 significant proteome changes were between 1.4- and 4-fold. Further investigation in translationally blocked (TB), nongrowing cells showed that Mn supplementation (20 µM) led to approximately 1.5 X faster acidification compared with Mn-free conditions. However, this faster acidification stagnated within 24 h, likely due to draining of intracellular NADH that coincides with substantial loss of culturability. Conversely, without manganese, nongrowing cells persisted to acidify for weeks, albeit at a reduced rate, but maintaining redox balance and culturability. Strikingly, despite being unculturable, α-keto acid-derived aldehydes continued to accumulate in cells incubated in the presence of manganese, whereas without manganese cells predominantly formed the corresponding alcohols. This is most likely reflecting NADH availability for the alcohol dehydrogenase-catalyzed conversion. Overall, manganese influences the lactococcal acidification rate, and flavor formation capacity in a redox dependent manner. These are important industrial traits especially during cheese ripening, where cells are in a non-growing, often unculturable state. IMPORTANCE In nature as well as in various biotechnology applications, microorganisms are often in a nongrowing state and their metabolic persistence determines cell survival and functionality. Industrial examples are dairy fermentations where bacteria remain active during the ripening phases that can take up to months and even years. Here we investigated environmental factors that can influence lactococcal metabolic persistence throughout such prolonged periods. We found that in the absence of manganese, acidification of nongrowing cells remained active for weeks while in the presence of manganese it stopped within 1 day. The latter coincided with the accumulation of amino acid derived volatile metabolites. Based on metabolic conversions, proteome analysis, and a reporter assay, we demonstrated that the manganese elicited effects were NADH dependent. Overall the results show the effect of environmental modulation on prolonged cell-based catalysis, which is highly relevant to non-growing cells in nature and biotechnological applications.


Assuntos
Queijo , Lactococcus lactis , Queijo/microbiologia , Fermentação , Homeostase , Lactococcus , Lactococcus lactis/metabolismo , Manganês/metabolismo , Manganês/farmacologia , NAD/metabolismo , NAD/farmacologia , Oxirredução , Proteoma/metabolismo , Proteoma/farmacologia
4.
Mol Syst Biol ; 17(4): e10093, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33821549

RESUMO

Cells adapt to different conditions via gene expression that tunes metabolism for maximal fitness. Constraints on cellular proteome may limit such expression strategies and introduce trade-offs. Resource allocation under proteome constraints has explained regulatory strategies in bacteria. It is unclear, however, to what extent these constraints can predict evolutionary changes, especially for microorganisms that evolved under nutrient-rich conditions, i.e., multiple available nitrogen sources, such as Lactococcus lactis. Here, we present a proteome-constrained genome-scale metabolic model of L. lactis (pcLactis) to interpret growth on multiple nutrients. Through integration of proteomics and flux data, in glucose-limited chemostats, the model predicted glucose and arginine uptake as dominant constraints at low growth rates. Indeed, glucose and arginine catabolism were found upregulated in evolved mutants. At high growth rates, pcLactis correctly predicted the observed shutdown of arginine catabolism because limited proteome availability favored lactate for ATP production. Thus, our model-based analysis is able to identify and explain the proteome constraints that limit growth rate in nutrient-rich environments and thus form targets of fitness improvement.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Aptidão Genética , Glucose/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteoma/metabolismo , Trifosfato de Adenosina/metabolismo , Evolução Biológica , Modelos Biológicos , Mutação/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...